
COOPERATIVE ACTOR ORIENTED SYNTHESIS FOR FPGA-BASED MIMO-OFDM
DETECTION

Yun Wu, John McAllister, Peng Wang

eStreams,
Institute of Electronics, Communications and Information Technology (ECIT),

Queens University Belfast, UK

ABSTRACT

Massively parallel networks of fine-grained software pro-
grammable processors on FPGA have enabled the only
software-defined architectures supporting real-time imple-
mentation of Sphere Decoding (SD) detection of Multiple-
Input Multiple-Output (MIMO) channels. However, research
to date has only proven the viability of the architectures to
support real-time software-defined SD; the adoption of this
approach is highly dependent on the availability of synthe-
sis methodologies and tool-sets to support the designer in
programming for these the target multi-core architectures.
No such approach which results in the derivation of real-time
solutions exists. In this paper a designer directed synthesis ap-
proach is proposed which creates and maps SD applications
specified as Dataflow Graphs (DFGs) onto such architec-
tures. When applied to synthesis of Fixed-complexity Sphere
Decoder (FSD) and Selective Spanning Fast Enumeration
(SSFE) detectors, multi-SIMD architectures on FPGA are
derived for 4 × 4 MIMO 16/64QAM scheme, which are the
only automatically derived software-defined implementations
on record which meets the 802.11n throughput requirements
of 480 Mbps.

Index Terms— Soft-Core, FPGA, ESL, MIMO, OFDM,
Dataflow, Mapping and Scheduling

1. INTRODUCTION

Sphere Decoding is a highly attractive detection scheme for
Multiple-Input Multiple-Output (MIMO) communications
systems, offering quasi-ML (Maximum Likelihood) perfor-
mance with considerably reduced computational complexity
as compared to the ideal ML detector [1]. However, for
Software-Defined Radio (SDR) systems, supporting real-
time quasi-ML SD for standards such as 802.11n or LTE is a
substantial implementation challenge.

This work is supported by Xilinx Inc., National Instruments Inc. and
CapnaDSP Ltd. under UK Engineering and Physical Sciences Research
Council contract number EP/H051155/1

Indeed, the recent work in [2] is the first demonstrated
feasible real-time SDR solution. By exploiting multi-SIMD
(Single Instruction, Multiple Data) architectures on Field-
Programmable Gate Array (FPGA) it has enabled the only
recorded software-defined quasi-ML MIMO detector for 4×4
16-QAM 802.11n MIMO. However, to do so necessitated
manual architecture design in VHDL and assembly-level
programming, negating the flexibility and rapid deployment
benefits of software radio platforms [3]. Hence, whilst the
architectural foundations are in place to enable such solu-
tions, platform synthesis methodologies and tool-sets are still
absent.

This paper resolves this problem. By extending work
in [4], it presents a designer-guided semi-automated coopera-
tive synthesis process which enables almost automatic deriva-
tion of real-time multi-SIMD SD architectures on FPGA.
Specifically, it makes three novel contributions.

1) A novel cooperative synthesis approach for SDR is pro-
posed.

2) A toolset to automate 1) is described.

3) The tool-set from 2) is applied to Fixed Complexity SD
(FSD) and Selective Spanning Fast Enumeration (SSFE)
detectionof ynthesis of 4×4 16/64QAM 802.11n, enabling
the first recorded automatically generated real-time imple-
mentations.

The rest of this paper is organized as follows. Section 2 mo-
tivates the choice of synthesis approach, before the synthesis
process and toolset described in Section 3 are applied to FSD
and SSFE detectors in Section 4.

2. MOTIVATION

MIMO communications standards, such as 802.11n and
LTE, employ multiple antennas at both the transmit and
receive ends of the communications channel to enable high
spectral efficiency in multipath communications environ-
ments [5]. For M ×N MIMO communication (i.e. M trans-
mit and N receive antennas) over a multipath fading channel,

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

246

H ∈ CN×M, with Additive White Gaussian Noise (AWGN),
v ∈ CN×1, a set of transmitted symbols, s ∈ CM×1, are
transformed to a received symbol vector, r ∈ CN×1, accord-
ing to

r = H · s + v. (1)

Detection algorithms such as SD attempt to retrieve an
estimate of ŝ from r. In particular, SD approaches are highly
attractive due to their ability to enable quasi-ML detection
with significantly reduced computational complexity as com-
pared to the ideal ML detector. Whilst many SD schemes
have been proposed, FSD [6] offers a unique combination
of low complexity, quasi-ML performance and deterministic
behavior that makes it ideal for embedded implementation.
Fig. 1 illustrates the structure of the FSD algorithm.

APED
1.1

APED
1.2

APED
1.16

APED
2.1

APED
2.2

APED
2.16

APED
3.1

APED
3.2

APED
3.16

Min

…

APED
4.1

APED
4.2

APED
4.16

APED
1.15

APED
2.15

APED
3.15

APED
4.15

PP

rH,

zfR ,

ŝ

Fig. 1. The FSD Algorithm Example of 16QAM and M = 4

As this shows, during Preprocessing (PP) the received
symbol vector r undergoes Zero-Forcing (ZF) equalization
according to:

zf = (HH ·H)−1 ·HH · r (2)

whilst the channel matrix H is ordered based on the
distortion experienced by each path through the multipath
environment, via process such as Sorted QR decomposition
(SQRD) [7], to produce an upper triangular matrix R. The
zf symbol vector then undergoes processing by an N -level
detection tree. During the first NFS =

⌈√
M − 1

⌉
levels,

each input symbol is enumerated to Mc successor symbols,
where Mc is the number of constellation points in the trans-
mission modulation scheme, whilst during the remaining
M − NFS levels, only a single successor is maintained.

At each level, the Accumulated Partial Euclidean Distance
(APED) is calculated according to (3) and (4).

PEDn,i =

M∑
m=n

r2n,m

∥∥∥ẑfm,i − ŝm,i

∥∥∥2 (3)

APEDn,i = APEDn,i + PEDn−1,i,

APEDM,i = PEDM,i

(4)

where i is the index of search branch, rn,m is the element
of R, ŝn,i is the nth detected symbol for ith branch and ẑfm,i

is the center of the constrained sphere defined as (5).

ẑfm,i = zfm,i −
M∑

l=m+1

rm,l

rl,l
(zfl,i − ŝl,i) ,

ẑfM,i = zfM,i.

(5)

The estimated ŝ is then selected by Min according to

ŝ = arg mini∈[1,L](APEDN,i), L = MNFS
c . (6)

FSD is the lowest complexity quasi-ML detection algo-
rithm on record, however real-time implementation for stan-
dard such as 802.11n is a challenging implementation prob-
lem. Specifically, the duplication of the FSD tree in Fig. 1
for each of the 108 OFDM sub-carriers in 4 × 4 16-QAM
802.11n [8] to achieve the requisite 480 Mbps is highly chal-
lenging SDR engineering problem. Indeed the FPGA-based
solution in [2] is the only approach to achieve it, by exploiting
a high performance network of SIMD processors, as shown in
Fig. 2(a).

As shown in Fig. 2, each SIMD way is composed of an
FPGA Processing Element (FPE), with a centralized Program
Counter (PC), Program Memory (PM), Instruction Decoder
(ID) and Immediate Memory (IMM). Both the FPE and the
SIMD conglomerate are highly configurable in terms of, for
instance, the number of SIMD ways, PM and Register File
(RF) sizes [2]. This has allowed the architecture to be tuned
at design time to enable such high performance but also im-
poses a heavy manual development load on the designer, in
terms of manual Register Transfer Level (RTL) design and
assembly level program of highly parallel architectures (up to
400 FPEs and 9 SIMDs in the architecture in Fig. 2(b)). This
necessity for manual design clearly negates the flexibility and
productivity benefits of software-radio applications and can
only be resolved by automated hardware and software design
technology.

Unfortunately, such approaches are currently lacking.
Leading approaches to ’system-level’ design of embedded
streaming architectures, such as as Daedalus [9] and Nu-
cleus [10], try to close the gap between an application model
and its embedded implementation but none is well suited

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

247

ALU

RF

ALU

RF

ALU

RF

ALU

RF

…
ID

PCFP
E

FP
E

FP
E

FP
E

PM

IMM…

(a) FPGA SIMD Processor Architecture [2]

SIMD-161 SIMD-162 SIMD-163 SIMD-168...

SIMD-169

...

zf1

zf9

...
...

...

...

...

...

...

...

...

... ...

...

zf2

zf10

...

zf3

zf11

...

...

zf8

zf16

...

(b) Multi-SIMD Architecture for 802.11n

Fig. 2. The FPE-based FSD for 802.11n

to the SDR-based SD problem at hand. Both Daedalus and
Nucleus map Kahn Process Network (KPN) models to tar-
get platforms, with Nucleus targeting pre-allocated platforms
and Daedalus composing platforms from library components
before optimizing the solution via automated Design Space
Exploration (DSE). Neither of these could avoid the man-
ual architecture design effort currently required. Hence a
new approach to synthesizing multi-SIMD architectures for
FPGA-based SDR is required.

Although ideally such an approach would generate an ab-
solutely optimal implementation from an application specifi-
cation, this is in general not feasible and a designer-guided
cooperative approach is required [11]. Such an approach is
described in Section 3.

3. COOPERATIVE SYNTHESIS: METHODOLOGY

3.1. Overview

Any synthesis process which targets FPGA and multi-core
processing technologies needs to address a number of key ar-
chitecture synthesis problems:

♦ Specification of the behavior of the application to be
realized at an appropriate level of abstraction to enable
high productivity, automated synthesis.

♦ Allocation of a set of processing resources to realize the
application

♦ Partitioning of the application model into subparts

♦ Mapping of the partitioned application onto the alloca-
tion

♦ Scheduling of the operations mapped to each architec-
ture element

♦ Code Generation of suitable source to allow, for in-
stance, compilers or RTL synthesis tools to create the
final architecture.

Whilst these requirements are quite general, there are spe-
cific requirements imposed by the use of SIMD processing
architectures which the design process must meet:

� The load assigned to each FPE (i.e. each way of each
SIMD) during mapping must be symmetric and load
balanced.

� Given the absence of forwarding logic in the target
SIMD architecture [2], interleaved scheduling of the
operations mapped to each FPE is required [4].

The cooperative synthesis methodology in Fig. 3 is pro-
posed to achieve these objectives. As this shows, three key
pieces of information are input:

◦ Application: A specification of the application behavior

◦ FPE: A specification of the FPE interface and config-
urable characteristics [2]

◦ Constraints: A set of real-time performance constraints
(specifically, a target throughput) which the realisation
must achieve

M-SIMD
Schedules

DSE

RTL Source
(.vhd)

M-SIMD
Schedules

Constraints

Partitioning

Allocation Mapping

Application FPE Kernel

Performance/
Cost Estimates

Scheduling

Code
Generation

Profiling

FPE-C

Constraints
Met?

No

Yes

M-SIMD
Schedules

M-SIMD
RTL

M-SIMD
RTL

M-SIMD
RTL

RTL Source
(.vhd)

RTL Source
(.vhd)

FPE-CFPE-C

Fig. 3. The Cooperative Synthesis Process

The application is specified using a Synchronous Dataflow
(SDF) [12] specification of the application - G = {V,E},

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

248

where V represents the set of vertices/actors and E repre-
sents the set of First-In First-Out (FIFO) edges connecting
the actors. When an actor v ∈ V fires, it consumes tokens
from input edges through input ports, transforms them in
some way and produces the results onto output edges through
output ports. Fig. 1 is an example SDF model of the FSD
algorithm.

Note that Fig. 3 also requires a ’kernel’ definition input.
This input is the designer’s key cooperative step in the design
process, identifying a subgraph of the application SDF around
which the SIMD implementations are built, which is used to
’anchor’ the partitioning and mapping process. Hence, in this
case it is a sub-graph of the SDF application model which
describes the designer’s choice of optimal SIMD processing
unit. It should be carefully chosen to maximise SIMD oper-
ation and allow effective generation of balanced, workloads
and highly interleaved schedules, as described in [4].

As Fig. 3 shows, the application DFG is partitioned ac-
cording to the kernel structure identified by the designer, as
described in Section 3.2, and a platform allocation generated
as described in Section 3.4. The kernel DFG is then profiled to
derive metrics of the computational and communication costs
(see [4] for further details), with this information used to drive
the mapping of the partitioned application DFG onto the al-
located platform, as described in Section 3.3. Post-mapping,
the application partitions mapped to each processor are sched-
uled, and the performance estimated. If performance is suffi-
cient to meet the real-time constraints specified in the input,
the implementation proceeds to code generation, otherwise
and iterative re-allocation, mapping and scheduling Design
Space Exploration (DSE) is used until the constraints are met.

3.2. Application SDF Clustering

Application Clustering serves to partition the application SDF
model into two parts:

• S: The SDF subgraph to be implemented on SIMD
structures

• Z: The SDF subgraph which is not to be implemented
using SIMD structures

The process of deriving S and Z from G and C (the kernel
SDF) is illustrated in Fig.4 where the step indexes are marked
in each block.

a) A trivial sub-graph Q is derived from G and subtracted
from it. The index for the set group S, i, is initialized.

b) The intersection set of Q and C is removed from Q and
added to Si after adding an empty set.

c) By forming the intersection of Q and C, b) is repeated
until the intersection set is empty.

d) If the intersection set of Q and C is empty, no kernels
remain in Q, and the union of Q and Z are formed.

G, C

∃(Q⊆G):(e(Q)∩e(G\Q)=Ø),

G = G\Q,Ø->S

Q = Q\ (Q ∩ C)

Si=Si∪ (Q ∩ C)

(Q ∩ C) ≠ Ø?

Z = Z∪ Q

G ≠ Ø?

S, Z

i = i + 1

yes

no

no

yes

2)

3)

4)

5)

6)

7)

i = 1,Z=Ø1)

Fig. 4. The Application SDF Clustering Flowchart

e) By judging the input graph set G, a) - d) are repeated by
increasing the index i until G is empty; S and the Z are
subsequently output.

The effect of this clustering on the 802.11n FSD appli-
cation DFG 1 is shown in Fig. 5 represented as G. As this
shows, a single branch of the FSD tree has been identified
as C, the DFG is factored to identify these kernels, mapping
APED1.i − APED4.i to C.i from each branch and includ-
ing these in S, with the remaining unclustered actors PP and
Min included in Z.

PP

APED
1.1

APED
1.2

APED
1.16

APED
2.1

APED
2.2

APED
2.16

APED
3.1

APED
3.2

APED
3.16

Min

…
…

APED
4.1

APED
4.2

APED
4.16

APED
1.15

APED
2.15

APED
3.15

APED
4.15

G

∈Z ∈SKey

108

PP

Min

C.1 C.2 C.16C.15……

108

C
APED
1

APED
2

APED
3

APED
4

C.1

Fig. 5. 802.11n FSD Clustering

After this clustering, the elements of Z are mapped to
SISD FPE architectures [2]2, with the members of S mapped
to multi-SIMD architectures. The mapping of the clustered

1Note that there are 108 FSD operations in the FSD DFG for 802.11n, 1
per OFDM subcarrier.

2For brevity, this straightforward process is not described in this paper.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

249

application DFG to SIMD processors is described in Section
3.3.

3.3. The Application Partitioning

After clustering the application DFG, the kernel set S is sym-
metric, and the processing load (i.e. the sets of kernels Si ∈
S) must be mapped to SIMD processors such that the final
load is balanced. Essentially this means that the kernels from
S must be selected and assigned to groups corresponding to
the target SIMD processors, in a manner which results in an
equal number of kernels being contained in each group.

To ensure completely balanced loads for each SIMD pro-
cessor, a number of kernels n must be mapped per SIMD lane;
since the number of SIMD (and hence the total number of
SIMD lanes) may vary according to the allocation process,
this number may be variable and cannot be statically defined.
However, two facts may be discerned about the number of
kernels mapped to each SIMD lane:

? It will be an integer

? It will be a factor of the total number of kernels such
that an equal number of kernels are mapped per lane

Accordingly, a set of division factors can be defined based
on |S| and |P|, the number of SIMD lanes. The division factor
set D is union set of two sub-sets D1 and D2 indicating all
the kernels and part of kernels of the trivial sub-graph of G
to be exactly divided for all the SIMD lanes given by Eq. (7)
and Eq. (8) respectively.{

D1 ⊆ Z :
∑

D1 = |Si| ·
⌊
|S|
|P|

⌋
,∀d ∈ D1,d = |Si|

}
,

(7)

{
D2 ⊆ Z :

∑
D2 =

|S| · |Si|
|P|

% |Si| ,∀d ∈ D2, |Si| |d
}
.

(8)
The division factors D = D1 ∪D2 and Fig. 6 shows the

procedure for mapping of the clustered SDF expressed in S by
adding d ∈ D kernels in S to a group of set P representing
the SIMD partitions.

a) Initialise i & j in 1) & 2).

b) In stage 3), K ∈ Si is mapped to Pj, where |K| = d ∈ D.
i is increased in 5) only if Si is empt and hence there are
no kernels available for mapping.

c) Repeat until all the elementary sequences of P contain K,
after which the adopted element d is removed from set D.

d) b) - d) are repeated until either D or S is empty.

The output P defines the mapping of kernels in S to ways
of each SIMD. When applied to the FSD example from Sec-
tion 3.2, the final partitioning is shown in Fig. 7. From Fig. 5,

S, P, D

i = 1

D=Ø ||S≠Ø ?

P

No

Yes

j >|P|?
No

Yes

1)

 j = 1

∃!(K⊆Si):(∀d∈D, |K|=d),

K -> Pj, j = j + 1,
 Si = Si\K

i = i + 1Si = Ø ?

No

Yes

D = D\ d

8)

2)

3)

5)

4)

6)

7)

Fig. 6. Application SDF Partitioning

D = {2} by (8). Hence, each kernel set K ∈ S with |K| = 2
is mapped onto a sequence Pi ∈ P, dividing S into 16 parts
(for |P| = 16, two kernel per SIMD lane).

∈Z ∈SKey ∈K ∈P

PP.2

Min.2

C.2.1 C.2.2 C.2.16C.2.15……

PP.1

Min.1

C.1.1 C.1.2 C.1.16C.1.15……

P1

PP.2

Min.2

C.1.2 C.1.4 C.2.16C.2.14……

P15 P16P2

PP.1

Min.1

C.1.1 C.1.3 C.2.15C.2.13……

D:D1={},D2={2}

Fig. 7. FSD Application Partitioning

3.4. Allocation, Mapping and Scheduling

After partitioning, the application kernel workload has been
exactly balanced across lanes of a single SIMD as defined
by P - all that remains is to create an allocation of multiple
SIMD units and map the total application workload thereon.
This is performed by an iterative allocation, kernel mapping
and scheduling approach outlined in Fig. 8. As Fig. 8 shows,
the definitions of the SIMD partition P and the kernel C are
processed along with constraints on the throughput T and the
register file capacity of each FPE R3.

3The register file size is capped since this is most resource expensive as-
pect of the processor architecture.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

250

Key

yes

Pi, Rc, Tc, C

p=1,Pc=|Pi|

F=Φ, t=0

∀C’∈Pi,F∩C’ ≠ Φ
&& Rc(F)<R ?

F=F∪C’,
c=PM(Sched(F))

t+c >PMc?

t=t+c,
Pi = Pi \ C’

Pi=φ?

F=F∪C’,
c=PM(InterSched(F))

F=F\C’, F -> W,
t->T

F -> W,t->T

yesno

no

LB = TH

PMc=floor((LB+UB)/2)

UB = TH

W

yes

no

no

yes

yes

no

UB>LB?

|W|> p?

1)

3)

4)

5)

6)

7)
8)

9)

10)

11)

12)

13)14) 14)

t = Calc_T(|W|,Max(T))

t > Tc

||pc> Pc?

yes

p=p+1

W=Φ,T=Φ
UB=PM(Pi)/p, LB=PM(C/|C|)

no

15)

16)17)

Allocation Mapping Scheduling

2)

6)

Fig. 8. Iterative Allocation, Mapping and Scheduling

The outermost allocation process (tasks denoted by white
text on black background) initally allocates a single SIMD
and increases the number via Binary-Constrained Search
(BCS) [13] mapping, scheduling and reallocation constrained
by the PM cost4 until either the throughput constraint Tc is
met, or a maximum number of processors, Pc reached. The
final allocation is stored in the set W, where |W| is the
number of allocated SIMDs, with each element w ∈ W a
sequence describing the processing schedule for SIMD w.
The allocation process proceeds as follows:

a) The initial allocation p and upper bound on the number of
SIMDs Pc are initialized as 1 and |Pi| respectively. The

4Program Memory is used as a proxy for meeting the throughput con-
straint, as the number of instructions defines throughput.

upper and lower bounds UB and LB respectively on pro-
gram memory for the BCS are initialized profiling the ker-
nels in Pi and the definition in C (step 2)).

b) The PM constraint on the BCS process PMc is updated
(3)) and the allocation set G initialized (4)), after which
the allocation G and mapping P are used to map and
schedule the implementation.

c) On completion of mapping and scheduling, if the PM re-
quirements are in excess of the program threshold PMc,
(7)), a new allocation is generated. Alternatively, by com-
paring |W| at Pc it may be determined if the number
of SIMDs has exceed the constraint, in which case BCS
bounds UB and LB are updated in 14) before a new
allocation is generated.

d) Once the LB > UB in step 12), the throughput is deter-
mined according to |W| and the maximum recorded pro-
gram memory size in T (15)). If throughput exceeds Tc,
or p ≥ Pc, W is output or reallocation (b) - d) occurs.

Mapping and scheduling (grey and white boxes respec-
tively) form a single conglomerate process which maps Pi

onto F representing the allocation, subject to constraint by
PMc. The procedures is as follows:

a) Each C′ ∈ Pi is mapped onto F, and scheduled according
to the process in [4], with estimates of PM cost c derived
as in 6).

b) According the the availability of RF resources, and the
presence of kernels of the same class on F, the kernels
added are either scheduled separately or in an interleaved
fashion to those already mapped to F in 6).

c) If resulting PM cost exceeds the constraint PMc, F is
added to W (8)), t recorded in T, the above procedures
from a) - c) are repeated.

d) Otherwise, PM cost t is updated in 9) and the kernel C′

from Pi is mapped onto F continuously until Pi is empty,
after which F is added to W and t is recorded in 11).

Fig. 9. Iterative FSD Allocation, Mapping and Scheduling
Result

Fig. 9 illustrates the result of applying this procedure to
Fig. 7. After iterative allocation, mapping and scheduling,

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

251

the multi-SIMD architectures generated meet the user speci-
fied constraints on throughput and program memory size, if
indeed such implementations are achievable.

4. AUTOMATED COOPERATIVE SYNTHESIS: FSD
AND SSFE

To demonstrate the effectiveness of the proposed cooperative
synthesis approach for automatically generating real-time SD
implementations using multi-SIMD architectures, it is applied
in this section to FSD and SSFE schemes for 802.11n [8].

4.1. Cooperative Synthesis: FSD

When the 4×4 16 QAM FSD algorithm model and kernel def-
inition in Fig. 5 are targeted towards 16 way SIMD processors
(up to 64 element RF, 1024 location PM) on Virtex-6 FPGA,
the implementations derived are as described in column 2 of
Table 1. As this shows, the real-time performance target of
480 Mbps for 40 MHz HT frame 802.11n [8] is comfortably
exceeded, with 503.3 Mbps achieved. When extended to 64
QAM, a similar result is observed.

Table 1. 4× 4 FSD Implementation Results
Modulation 16-QAM 64-QAM

SIMDs 9 10
DSP48E1 144 160

Clock (MHz) 322 298
Throughput (Mbps) 503.3 500.9

Instructions 184 184
LUTs (×103) 24.42 27.08

4.2. Cooperative Synthesis: SSFE

SSFE adopts a highly configurable tree structure, where the
number of enumerated symbols from each node is expressed
using a sequence m. Let the numbers in m also stand for the
nodes, Fig. 10(a) describes the structure of the SSFE tree for
m = [1, 1, 2, 4]. Similarly, the structure of an example SSFE
kernel, with structure [1, 1, 2] is shown in Fig. 10(b).

A series of SSFE schemes for 16 and 64 QAM 4 × 4
MIMO have been implemented on Virtex-6 FPGA exploit-
ing the cooperative synthesis toolset as outlined in Tables
2 and 3 respectively. As this shows, real-time performance
for 802.11n is achieved for all SSFE schemes. In addition,
as compared to the manually created Very Long Instruction
Word (VLIW) implementations in [14], Table 3 demonstrates
the substantial throughput increases achieved by utilizing the
FPGA-based multi-SIMD implementation approach.

The cooperative synthesis performance results for differ-
ent SSFE schemes of 16QAM and 64QAM 4 × 4 MIMO

ENUM
0

ENUM
1.1

ENUM
2.2

ENUM
3.2

Min

ENUM
2.1

ENUM
3.1

ENUM
1.2

ENUM
2.4

ENUM
3.4

ENUM
2.3

ENUM
3.3

ENUM
1.4

ENUM
2.8

ENUM
3.8

ENUM
2.7

ENUM
3.7

m={1,1,2,4}

ENUM
1.3

ENUM
2.6

ENUM
3.6

ENUM
2.5

ENUM
3.5

(a) SSFE DFG

ENUM
1

ENUM
2

ENUM
3

ENUM
2

ENUM
3

(b) {1, 1, 2} Kernel

Fig. 10. SSFE Cooperative Synthesis Inputs

all achieve the real-time performance on FPGA based soft-
core streaming processor compared to the manual VLIW ap-
proaches [14].

Given these FSD and SSFE synthesis results, the effec-
tiveness of the proposed cooperative synthesis scheme is ap-
parent. It has not only demonstrated the unique capability to
automatically generate real-time implementations of SD de-
tection for 4× 4 802.11n, but that it is highly scalable across
SD tree topologies and schemes. Given the inability of any
other SDR platform to even support manually created real-
time detectors for such schemes, these are truly a unique set
of capabilities.

5. CONCLUSION

This paper has presented the first automated approach to gen-
eration of real-time software defined MIMO SD detectors
for modern standard such as 802.11n and LTE. By target-
ing multi-SIMD architectures on FPGA via a cooperative,
designer guided synthesis process. By exploiting dataflow
modeling semantics and designer-identified SIMD processing
kernels, real-time 480 Mbps implementations for detection of
4× 4 16 QAM 802.11n MIMO systems has been achieved.

It is worth noting that whilst this work has presented how
these may be generated automatically, it is highly unique in
that respect. Indeed, recorded instances of real-time detectors
for 802.11n are absent beyond those supported by the plat-
form targeted here.

6. REFERENCES

[1] M. Pohst, “On The Computation of Lattice Vectors
of Minimal Length, Successive Minima and Reduced
Bases with Applications,” SIGSAM Bull., vol. 15, no.
1, pp. 37–44, Feb. 1981.

[2] X. Chu and J. McAllister, “Software-Defined Sphere

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

252

Table 2. 4× 4 16-QAM SSFE Implementations
Scheme [1,1,1,1] [1,1,1,4] [1,1,2,4] [1,2,2,4] [1,1,1,8] [1,1,2,8] [1,2,4,8]
Kernel [1,1,1,1] [1,1,1] [1,1,2] [1,2,2] [1,1,1] [1,1,2] [1,2,4]
SIMDs 1 3 5 8 5 9 40

DSP48E1 16 48 64 128 64 144 640
LUTs (×103) 2.14 8.53 14.22 22.75 14.22 24.42 113.19
Instructions 141 225 214 308 314 357 545

Clock (MHz) 341 339 318 314 318 322 255
Throughput (Mbps) 618.6 482.3 498.9 521.4 510.1 489.9 500.8

Table 3. 4× 4 64-QAM SSFE Implementations
Scheme [1,1,1,1] [1,1,1,4] [1,1,2,4] [1,2,2,4] [1,1,1,8] [1,1,2,8] [1,2,4,8]
Kernel [1,1,1,1] [1,1,1] [1,1,2] [1,2,2] [1,1,1] [1,1,2] [1,2,4]
SIMD 1 2 3 5 3 6 20

DSP48E1 16 32 48 80 48 96 320
LUTs (×103) 2.14 5.67 8.53 14.22 8.53 17.02 56.59
Instructions 141 168 357 308 499 357 545

Clock (MHz) 341 339 339 333 339 315 276
Throughput ([14]) (Mbps) 927.9 (125.3) 581.3 (48.5) 547.1 (37.4) 520.1 489.3 508.5 485.9

Decoding for FPGA-based MIMO Detection,” IEEE
Trans. Signal Processing, Accepted. 2012.

[3] J. H. Reed, Software Radio: A Modern Approach to
Radio Engineering, Prentice Hall, 1 edition, 2002.

[4] C. Zheng, J. McAllister, and Y. Wu, “A Kernel Inter-
leaved Scheduling Method for Streaming Applications
on Soft-core Vector Processors,” 2011 International
Conference on Embedded Computer Systems (SAMOS),
pp. 278–285, July 2011.

[5] A. Sibille, C. Oestges, and A. Zanella, MIMO: From
Theory to Implementation, Academic Press, 1st edition,
2010.

[6] L. Barbero and J. Thompson, “Fixing the Complexity of
the Sphere Decoder for MIMO Detection,” IEEE Trans-
actions on Wireless Communications, vol. 7, no. 6, pp.
2131–2142, June 2008.

[7] D. Wübben, R. Böhnke, J. Rinas, K. D. Kammeyer,
and V. Kühn, “Efficient algorithm for decoding layered
space-time codes,” IEE Electronic Letters, vol. 37, no.
22, pp. 1348–1350, Nov 2001.

[8] IEEE Standards Association, 802.11n-2009 IEEE Local
and Metropolitan Area NetworksSpecific Requirements
Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications Amendment 5:
Enhancements for Higher Throughput, IEEE, 2009.

[9] H. Nikolov, M. Thompson, and et. al, “Daedalus: to-
ward composable multimedia MP-SoC design,” Pro-
ceedings of the 45th annual Design Automation Confer-
ence, pp. 574–579, 2008.

[10] J. Castrillon, S. Schürmans, and et. al, “Component-
Based Waveform Development: The Nucleus Tool Flow
For Efficient and Portable Software Defined Radio,”
Analog Integr. Circuits Signal Process., vol. 69, no. 2-
3, pp. 173–190, December 2011.

[11] J. Cong, B. Liu, and et. al, “High-Level Synthesis
for FPGAs: From Prototyping to Deployment,” IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 30, no. 4, pp. 473–491, April
2011.

[12] E.A. Lee, “Synchronous Data Flow,” Proceedings of
the IEEE, vol. 75, pp. 1235 – 1245, September 1987.

[13] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, Speci-
fication and design of embedded systems, Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1994.

[14] M. Li, B. Bougard, and et. al, “Selective Spanning
with Fast Enumeration: A Near Maximum-Likelihood
MIMO Detector Designed for Parallel Programmable
Baseband Architectures,” IEEE International Confer-
ence on Communications, ICC ’08., pp. 737 – 741, May
2008.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

253

