
DVB-T2 ROTATED CONSTELLATION DEMAPPING ON A GPU

Stefan Grönroos (Turku Centre for Computer Science TUCS/Åbo Akademi University,
Turku, Finland; stefan.gronroos@abo.fi); Kristian Nybom (Åbo Akademi University,
Turku, Finland; kristian.nybom@abo.fi); Jerker Björkqvist (Åbo Akademi University,

Turku, Finland; jerker.bjorkqvist@abo.fi)

ABSTRACT

The DVB-T2 standard for digital terrestrial broadcasting sup-
ports the use of QAM (quadrature amplitude modulation)
constellations where the constellation points are rotated in
the I-Q plane. This combined with a cyclic delay of the Q
component provides improved performance in some fading
channels. The complexity of the optimal demapping pro-
cess for rotated constellations is however significantly higher
than for non-rotated constellations. This makes the DVB-T2
demapper one of the most computationally complex parts of
a receiver. In this paper, we examine possible simplifications
of the demapping process suitable for implementation on a
general purpose computer containing a modern GPU (graph-
ics processing unit). Furthermore, we measure the perfor-
mance in terms of throughput of implemented algorithms.
The implementations are designed to interface efficiently to a
previously implemented real-time capable GPU-based LDPC
(low-density parity-check) channel decoder.

1. INTRODUCTION

The DVB-T (Digital Video Broadcast – Terrestrial) system
for digital television broadcasting is widely used for broad-
casting around the world. As high bitrate High-Definition
Television (HDTV) broadcasts become more prevalent, how-
ever, the need for a more spectrum efficient standard in-
creases. The DVB-T2 standard [1, 2] has been developed to
address this need. This standard offers significantly increased
capacity (bitrate) when compared to DVB-T. The increased
capacity comes at the cost of more complex signal process-
ing components in the physical layer, however.

Two of the most complex parts of a DVB-T2 receiver are
the channel decoder and QAM (quadrature amplitude mod-
ulation) demapper [3]. For channel coding, the standard
specifies the use of LDPC (low-density parity-check) codes
[4] with exceptionally long codeword lengths as the inner
coding scheme, as well as an outer BCH (Bose-Chaudhuri-
Hocquenghem) code. DVB-T2 features QPSK, 16-QAM, 64-
QAM and 256-QAM modulation. Optionally, the QAM con-
stellation diagram may be rotated in signal space (the angle
of rotation is specified for each modulation scheme). This ro-

tation, combined with the subsequent interleaving of the in-
phase (I) and quadrature (Q) components of the signal, pro-
vides signal-space-diversity (SSD)[5, 6] and gives improved
performance in some fading channels.

The authors of this paper have earlier presented a real-
time capable decoder of DVB-T2 LDPC codes implemented
on a GPU (graphics processing unit) using the NVIDIA
CUDA (Compute Unified Device Architecture) [7]. In a step
towards creating a real-time capable software define radio
(SDR) implementation of a DVB-T2 receiver on a general
purpose computer, we focus on implementing fast rotated
constellation demappers in this paper. The proposed imple-
mentations will, like the LDPC decoder already in place, be
implemented using the CUDA on a consumer-grade GPU.
In a DVB-T2 receiver chain, the demapper generates log-
likelihood ratio (LLR) values to be used as inputs to the
LDPC decoder, with only a bit interleaver separating the two
signal processing blocks. As both blocks are implemented on
a GPU, we can avoid copying of data between the GPU and
CPU between the demapper and LDPC decoder blocks. In the
paper, we examine the implementations of several demapping
algorithms, measuring their performance in terms of speed.
We also measure the combined throughput when perform-
ing both demapping and LDPC decoding on the GPU, and
compare the achieved figures to the maximum throughputs
required by the DVB-T2 standard.

While the demapping of traditional gray-mapped non-
rotated QAM is not very complex, due to the possibility of
treating the I and Q components independently, rotation of
the constellation diagram changes this, and complexity is
significantly increased due to the I and Q axes being inter-
dependent. Various algorithms for the demapping of rotated
constellations have been discussed in [6, 8–11]. In addition
to the maximum likelihood (ML) demapper as well as its
max-log simplification [6, 8], the algorithms based on MMSE
(minimum mean squared error) decorrelation and IC (inter-
ference cancellation) described in [10], will also be imple-
mented and measured on the GPU.

The paper is laid out as follows. In section 2, we de-
scribe the target platform of our implementations, includ-
ing the CUDA and the specific GPU which was used to test

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

233

the implementations. In section 3, we describe the various
demapping algorithms that were implemented and tested on
the GPU, while in section 4, we describe the actual imple-
mentations of these algorithms. Benchmark results are pre-
sented in section 5 along with discussion regarding the ob-
tained results. The paper is finally concluded in section 6.

2. TARGET ARCHITECTURE

In this section we describe the NVIDIA CUDA, and the spe-
cific GPU for which the GPU-based implementations were
developed. Other relevant components of the system used for
benchmarking the implementations are also described.

The desktop computer system, of which the NVIDIA
GeForce GPU — on which the CUDA implementations were
tested — was one component, also contained an Intel Core i7-
950 main CPU running at a 3.06 GHz clock frequency. 6 GB
of DDR3 RAM (Double Data Rate 3 random access mem-
ory) with a clock frequency of 1666 MHz was also present in
the system. The operating system was the Ubuntu Linux dis-
tribution for 64-bit architectures. Version 4.2 of the CUDA
Toolkit was used.

2.1. CUDA

The NVIDIA CUDA[12] is used on modern NVIDIA GPUs.
This architecture is well suited for data-parallel problems, i.e
problems where the same operation can be executed on many
data elements at once.

In the CUDA C programming model, we define kernels,
which are functions that are run on the GPU by many threads
in parallel. The threads executing one kernel are split up into
thread blocks, where each thread block may execute indepen-
dently, making it possible to execute different thread blocks
on different processors on a GPU. The GPU used for run-
ning the LDPC decoder implementation described in this pa-
per was an NVIDIA GeForce GTX 570 [13, 14], which is
based on the Fermi architecture [15], and features 15 stream-
ing multiprocessors (SMs) containing 32 cores each. The
scheduler schedules threads in groups of 32 threads, called
thread warps. The Fermi hardware architecture features two
warp schedulers per SM, meaning the cores of a group of 16
cores on one SM execute the same instruction from the same
warp.

Each SM features 64 kB of fast on-chip memory that
can be divided into 16 kB of L1 cache and 48 kB of shared
memory (“scratchpad“ memory) to be shared among all the
threads of a thread block, or as 48 kB of L1 cache and 16
kB of shared memory. There is also a per-SM register file
containing 32,768 32-bit registers. All SMs of the GPU share
a common large amount of global RAM memory (1280 MB

for the GTX 570), to which access is typically quite costly in
terms of latency, as opposed to the on-chip shared memories.

The long latencies involved when accessing global GPU
memory can limit performance in memory intensive applica-
tions. Memory accesses can be optimized by allowing the
GPU to coalesce the accesses. When the 32 threads of one
warp access a continuous portion of memory (with certain
alignment limitations), only one memory fetch/store request
might be needed in the best case, instead of 32 separate re-
quests if the memory locations accessed by the threads are
scattered [12]. In fact, if the L1 cache is activated (can be dis-
abled at compile time by the programmer), all global memory
accesses fetch a minimum of 128 bytes (aligned to 128 bytes
in global memory) in order to fill an L1 cache line. Memory
access latencies can also be effectively hidden if some warps
on an SM are able to run arithmetic operations while other
warps are blocked by memory accesses. As the registers as
well as shared memories are split between all warps that are
scheduled to run on an SM, the number of active warps can
be maximized by minimizing the register and shared memory
requirements of each thread.

3. DEMAPPER ALGORITHMS

In this section, we describe various demapper algorithms
that were implemented on the GPU. While non-rotated gray-
mapped QAM demappers may treat the I and Q components
of the signal as two separate PAM (pulse amplitude modula-
tion) signals, with rotated QAM constellations, the two com-
ponents become correlated and the demapper thus becomes
more complex. In subsection 3.1, we describe the rotated
QAM constellations used in DVB-T2, while in subsection
3.2, we describe various simplifications that can be made in
the demapper to lower complexity.

3.1. DVB-T2 Rotated Constellations

In Figure 1, a block diagram of the BICM (bit interleaved
coding & modulation) module of a DVB-T2 modulator is
shown. DVB-T2 [1, 8] supports the use of QPSK, 16-QAM,
64-QAM, and 256-QAM modulation. After gray mapping of
bit sequences to constellations, the constellation diagram may
optionally be rotated to provide SSD. If rotation is enabled,
the Q component is also cyclically delayed by one OFDM
(orthogonal frequency-division multiplexing) cell. As seen in
Figure 1, a cell interleaver in which the mapped OFDM cells
are further interleaved follows the Q-delay, thus separating
the I and Q components further. The constellation diagrams
for QPSK, 16-QAM, 64-QAM, and 256-QAM are rotated by
29.0, 16.8, 8.6, and arctan(1

16) ≈ 3.6 degrees, respectively.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

234

Figure 1: Block diagram of the BICM module of a DVB-T2 modu-
lator.

3.2. Algorithms

The optimal, although highly complex, maximum likelihood
(ML) algorithm for calculating the LLR value for bit bi (i ∈
[1,m] if we use 2m-QAM) can be expressed as follows [8]:

LLR(bi) = ln

(
Pr(bi = 1|r
Pr(bi = 0|r

)

= ln

∑x∈C1
i
(e−

D(x)

2σ2)∑
x∈C0

i
(e−

D(x)

2σ2)

 ,

(1)

where

D(x) = (rI − ρIxI)2 + (rQ − ρQxQ)2.

Here r =

[
rI
rQ

]
denotes the received OFDM cell, ρI

and ρQ denote the amplitude fading factors of the channel,
and σ2 is noise variance. C0

i and C1
i denote the sets of ro-

tated constellation points for which the i:th bit equals 0 and

1, respectively. Also note that x =

[
xI
xQ

]
in equation 1.

To simplify equation 1, one can apply the approximation
[8]:

ln

 ∑
i∈[1,n]

(eai)

 ≈ max
i∈[1,n]

(ai), (2)

which yields the simplified max-log demapper equation:

LLR(bi) ≈
1

2σ2

[
min
x∈C0

i

(
D(x)

)
− min

x∈C1
i

(
D(x)

)]
. (3)

While the max-log simplification of equation 3 does
remove some complexity, we still need to calculate two-
dimensional distances to 2m points in the case of 2m-QAM
modulation. The authors of [9] discuss the possibility of as-
signing the constellation points of a rotated constellation dia-
gram into four overlapping subsets. This is illustrated in Fig-
ure 2, where one proposed subset is shown (within the shaded
area) for a 256-QAM constellation diagram. A subset is cho-
sen based on the signs of the received point’s (r) I and Q
components, and only distances to points within that subset
are calculated using the max-log demapper. Depending on

the chosen size of the four subsets, complexity is reduced at
the cost of some demapper accuracy. The subset size shown
in Figure 2 was demonstrated [9] to yield good demapper per-
formance at a reduction of 44% in the number of distance
calculations performed for each received OFDM cell. The
authors of [6] also propose a similar division into subsets.

In [10], the authors propose performing an MMSE (min-
imum mean squared error) decorrelation followed by interfer-
ence cancellation (IC) to decorrelate the I and Q components.
This is similar to methods commonly used in MIMO (multi-
ple input - multiple output) detectors. Based on the derotated
and decorrelated I and Q components, we may perform re-
duced complexity demapping separately on the two compo-
nents, similarly to traditional QAM demapping. In this case
we have the channel matrix:

H
.
= PQ =

[
ρI 0
0 ρQ

] [
cos θ − sin θ
sin θ cos θ

]
,

where θ is the rotation angle of the constellation diagram.
The LLR values after decorrelation are given by (see [10] for
detailed calculations):

LLR(bi) =

βk

[
min
a∈C0

i

∣∣∣∣ x̂MMSE,k

γkk
− ak

∣∣∣∣2 − min
a∈C1

i

∣∣∣∣ x̂MMSE,k

γkk
− ak

∣∣∣∣2
]
,

(4)

where k = 2 − (i mod 2), i.e. k equals 1 for odd values
of i, and 2 for even values. This reflects the fact that odd
bits are conveyed by the I component, and even bits by the
Q component in the gray mapped (non-rotated) constellation
diagram. Also note that, in contrast to the ML and max-log
algorithms, C here denotes the set of non-rotated constella-
tion points. Furthermore,

x̂MMSE
.
= (HTH + σ2

nI)−1HT r = QT (P2 + σ2
nI)−1PT r

= QT

[
ρI

ρ2I+σ
2
n
rI

ρQ
ρ2Q+σ2

n
rQ

]
,

Γ
.
=(HTH + σ2

nI)−1HTH = QT (P2 + σ2
nI)−1P2Q

=QT

 ρ2I
ρ2I+σ

2
n

0

0
ρ2Q

ρ2Q+σ2
n

Q,

and

βk
.
=

γkk
1− γkk

After calculating x̂MMSE and Γ, the LLR calculation in
equation 4 for a certain bit bi is now only dependent on one
axis of the non-rotated constellation diagram. To further de-
crease complexity, one may replace the minimum distance
calculations in equation 4 with lookup tables [10].

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

235

Figure 2: One of four overlapping subsets of a 256-QAM rotated
constellation diagram, as proposed in [9].

Interference cancellation may be performed on the weak-
est channel (I or Q), which is determined by selecting the
component corresponding to the smallest value of ρI and ρQ.
To calculate the LLR for the weakest channel (strongest chan-
nel is calculated according to eq. 4):

LLR(bi) =

βIC,k

[
min
a∈C0

i

∣∣∣∣ x̂IC,kγIC,k
− ak

∣∣∣∣2 − min
a∈C1

i

∣∣∣∣ x̂IC,kγIC,k
− ak

∣∣∣∣2
]
,

(5)

where

x̂IC,k
.
=

hTk (r− hj āj)

hTk hk + σ2
n

, γIC,k
.
=

hTk hk
hTk hk + σ2

n

, and

βIC,k
.
=

γIC,k
1− γIC,k

,

where j = 1 + (i mod 2) (i.e. the opposite channel from k),

and āj is the value of aj for which
∣∣∣ x̂MMSE,jγjj

− aj
∣∣∣2,a ∈ C

is minimized (C is the set of all constellation points, i.e. we
choose the one-dimensional point on the axis corresponding
to j which is closest to x̂MMSE,j

γjj
).

The algorithms discussed in this section were imple-
mented on the GPU mentioned in section 2 for further evalu-
ation. These CUDA implementations are discussed further in
the following section.

4. IMPLEMENTATION

As mentioned, our implementations of the demapper algo-
rithms were realized on an NVIDIA CUDA-based GPU. The
GPU kernels were written in the C language. The input to the

demapper was in the form of complex cell values where both
components were 32-bit floating point values. This precision
is also retained within the GPU kernels. In these implemen-
tations, the output LLR values are however converted to 8-bit
fixed point values, due to the fact that the GPU-based LDPC
decoder uses this LLR format [7]. This conversion may not be
necessary if another, high-precision, LDPC decoder is used.
The GPU implementations operate on cells belonging to 128
DVB-T2 FEC (forward error correction) frames in parallel.
Each FEC frame corresponds to 16200 or 64800 bits, depend-
ing on if short or long LDPC codewords are used [1].

In order to benefit from the advantages of memory ac-
cess coalescing, GPU threads were created such that the 32
threads of a thread warp would operate on cells from 32 con-
secutive FEC frames. This combined with organizing data in
memory such that the data needed for 32 consecutive FEC
frames are also consecutive in memory, gives good memory
coalescence. Thread blocks were set to be 256 threads in size,
i.e. one thread block contains threads demapping 2 cells from
all 128 frames. The remainder of this section provides some
implementation details for the algorithms presented in section
3.

4.1. ML Demapper and Max-Log Demapper

The implementation of the full maximum likelihood demap-
per described by equation 1 was implemented roughly as fol-
lows. First we loop over each constellation point x ∈ C,
where the expression d := e−

D(x)

2σ2 is calculated. For 2m-
QAM, 2m sums, S = [su,v]m×2, were needed to store the
two sums for each of the m LLRs. In each loop iteration, we
then perform si,k := si,k + d, ∀i ∈ [1,m] — where k is 1 if
x ∈ C0

i , and 2 if x ∈ C1
i — in an inner loop.

After this main loop, we calculate LLR(bi) :=
ln(si,2/si,1),∀i ∈ [1,m] (where LLR(bi) is converted to a
fixed point 8-bit value).

The implementation of the max-log demapper is quite
similar. Here, for each constellation point, let d := D(x),
and we use S to store the smallest values of d instead of accu-
mulating sums, i.e. ∀i ∈ [1,m] : si,k := d iff d < si,k.
In the final loop, we then calculate LLR(bi) := (si,1 −
si,2)/2σ2,∀i ∈ [1,m].

4.2. MMSE and MMSE-IC Demapper

Two demappers based on MMSE decorrelation were imple-
mented for comparison. The first implementation calculates
all LLRs according to equation 4, while the second imple-
mentation performs IC and calculates the LLRs for the bits
conveyed by the worst channel according to equation 5. Both
of these implementations consist of two separate GPU ker-
nels. In the MMSE-only case, one kernel calculates the LLRs
corresponding to the I channel, and the other calculates LLRs

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

236

corresponding to the Q channel. When IC is used, one ker-
nel calculates LLRs corresponding to the strongest of the
two channels, while the other calculates LLRs for the weaker
channel. This makes code for each kernel shorter, and avoids
branching instructions in the kernels.

Furthermore, for both implementations, two 1-
dimensional lookup tables were used for calculating the LLRs
after MMSE decorrelation. The tables contain the value
mina∈C0

i

∣∣∣ x̂MMSE,kγkk
− ak

∣∣∣2 − mina∈C1
i

∣∣∣ x̂MMSE,kγkk
− ak

∣∣∣2
for 1024 (in our case) values of x̂MMSE,k

γkk
, where one table

contains the values for k = 1 and the other for k = 2. Each
table thus contains 1024∗m/2 entries when using 2m-QAM.
The large table size was chosen for precision, as smaller sizes
were not found to affect demapping speed significantly.

5. MEASUREMENT RESULTS

In this section, measured throughputs of the implemented
demapper algorithms are presented. Within the DVB-T2
physical layer simulator used for testing the implementations,
the OFDM cells were transfered to the GPU, after which the
demapping of cells belonging to 128 FEC frames was per-
formed. The output LLR values were not transfered back to
the host, as the LDPC decoder was also implemented as GPU
kernels. Thus, only the output hard-decision bits of the LDPC
decoder were transfered back to the host for further process-
ing. The bit-deinterleaver operation, which is normally per-
formed after demapping (see Figure 1), was postponed until
after the LDPC decoder, and was implemented using lookup
tables on the host CPU. Postponing the bit-deinterleaver is
possible if one makes the LDPC decoder operate on inter-
leaved LLR values and bits by appropriately interleaving the
columns of the parity-check matrix defining the LDPC code.

Table 1: Execution times (in seconds) of the various demapper algo-
rithms on the GPU, given 16-QAM, 64-QAM, and 256-QAM mod-
ulation schemes.

Modulation ML Max-Log MMSE MMSE-IC
16-QAM 0.0101 0.0070 0.0028 0.0032
64-QAM 0.0255 0.0218 0.0022 0.0024
256-QAM 0.0832 0.0788 0.0019 0.0021

Table 2: Throughput of the combined demapper and LDPC decoder
operation on the GPU. This figure also includes copying of data be-
tween the host and GPU.

Modulation ML Max-Log MMSE MMSE-IC
16-QAM 70.8 72.5 75.4 75.0
64-QAM 64.1 66.0 78.2 78.1
256-QAM 44.9 45.9 80.0 80.0

Table 1 shows the measured execution times in seconds
to process one batch of 128 FEC frames of the four imple-
mented GPU-based demappers on the test setup. This mea-
sured time is the average over 10 blocks of 128 FEC frames.
As the long LDPC codeword length was used, each FEC
frame contains 64800 bits of data. The LDPC decoder (as
described in [7]), running 30 iterations of the message pass-
ing decoding algorithm, had a run time of approximately 0.09
seconds for each block of 128 FEC-frames. Table 2 shows the
average throughput in Mbps when running both the demap-
per and LDPC decoder on the GPU. Included in these mea-
surements are the demapper, the LDPC decoder, as well as
copying the data between host and GPU. The throughput has
been calculated as (128 ∗ 64800)/t bps, where t is the total
execution time for 128 FEC frames.

We can see from Table 1 that the MMSE-based algo-
rithms are roughly 40 times faster than the ML algorithm and
its max-log approximation when using 256-QAM. This is ex-
pected, and is largely due to the fact that we can calculate dis-
tances in one dimension after MMSE decorrelation, as well as
due to the use of lookup tables. Note that, as opposed to the
ML and max-log algorithms, the MMSE implementations de-
crease slightly in speed with lower order modulations. This is
most probably due to the need for running a larger amount of
total threads with lower order constellations, due to each cell
carrying fewer bits, which increases the complexity per bit
of the MMSE decorrelation. We can also see that the advan-
tage of the MMSE implementations decreases dramatically
with lower modulation order. At 16-QAM, the fastest (i.e.
non-IC) MMSE algorithm is only 2.5 times faster than the
max-log implementation. This is also to be expected, as the
number of distances calculated by the ML and max-log im-
plementations are very low at this setting. Furthermore, a
max-log demapper using subsets as proposed in [9] was also
implemented and measured for 256-QAM, where each sub-
set contained 144 of the 256 constellation points (the subset
size shown in Figure 2). This yielded an execution time of
0.0538s for the demapper, and an overall throughput of 53.3
Mbps.

Annex C of the DVB-T2 standard assumes that received
cells can be read from a deinterleaver buffer at 7.6 × 106

OFDM cells per second [1, 8]. At the 16-QAM, 64-QAM,
and 256-QAM modulation settings, we can represent 4, 6,
and 8 bits per cell respectively. This means that the demod-
ulator should be able to perform at a maximum bitrate of up
to 60.8 Mbps (Megabits per second) in the 256-QAM case,
as well as 30.4 and 45.6 Mbps in the 16-QAM and 64-QAM
cases, respectively. These throughput requirements are met
with all demapper implementations when using 16-QAM or
64-QAM modulation. In the case of 256-QAM, however, the
maximum required throughput was exceeded only using the
fast MMSE-based implementations.

One may further affect the combined throughput by low-
ering or increasing the maximum amount of LDPC iterations

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

237

used. In [7], however, it is shown that error correction perfor-
mance is quite significantly deteriorated once we lower the
amount of iterations below 30. In order to gain better er-
ror correction performance in difficult channel conditions, we
may however wish to increase the amount of iterations in case
we exceed the required throughput.

6. CONCLUSION

In this article, we have implemented and compared vari-
ous demapping algorithms for rotated QAM constellations
on a modern GPU. Benchmarks show that if a fast demap-
ping algorithm is chosen, the demapper may share the GPU
with an LDPC decoder while fulfilling the maximum required
throughput requirements of the standard, even using the most
complex 256-QAM mode. We have also shown that for up
to 64-QAM, we may be able to run even the optimal, most
complex, ML demapper, while still reaching the throughput
target.

While the penalties in terms of BER (bit error rate) at
a certain SNR (signal-to-noise ratio) of the various simpli-
fications of the demapper were explored to some extent in,
for instance [6, 10], more thorough simulations should still
be performed on the implementations presented in this paper.
This would give further insight into the accuracy-throughput
tradeoff of the various demappers. These simulations were
not a focus of this paper due to incomplete models of fading
channels in the DVB-T2 physical layer simulator used to test
the implementations. In the future, we also hope to integrate
the decoder implementations with other software defined sig-
nal processing blocks to build a completely software defined,
real-time, receiver chain.

7. REFERENCES

[1] ETSI EN 302 755 v1.1.1. Digital Video Broadcasting (DVB);
Frame Structure Channel Coding and Modulation for a Second
Generation Digital Terrestrial Television Broadcasting System
(DVB-T2). ETSI Technical Report, 2009.

[2] L. Vangelista, N. Benvenuto, S. Tomasin, C. Nokes, J. Stott,
A. Filippi, M. Vlot, V. Mignone, and A. Morello. Key tech-
nologies for next-generation terrestrial digital television stan-

dard DVB-T2. Communications Magazine, IEEE, 47(10):146–
153, Oct. 2009.

[3] S. Grönroos, K. Nybom, and J. Björkqvist. Complexity anal-
ysis of software defined DVB-T2 physical layer. Analog In-
tegrated Circuits and Signal Processing, 69:131–142, 2011.
DOI: 10.1007/s10470-011-9724-4.

[4] R. Gallager. Low-Density Parity-Check Codes. PhD thesis,
M.I.T., 1963.

[5] J. Boutros and E. Viterbo. Signal space diversity: a power-
and bandwidth-efficient diversity technique for the Rayleigh
fading channel. Information Theory, IEEE Transactions on,
44(4):1453 –1467, jul 1998.

[6] Meng Li, C.A. Nour, C. Jego, and C. Douillard. Design of
rotated QAM mapper/demapper for the DVB-T2 standard. In
Signal Processing Systems, 2009. SiPS 2009. IEEE Workshop
on, pages 18–23, Oct. 2009.

[7] S. Grönroos, K. Nybom, and J. Björkqvist. Efficient GPU
and CPU-based LDPC decoders for long codewords. Ana-
log Integrated Circuits and Signal Processing, 2012. DOI:
10.1007/s10470-012-9895-7.

[8] Draft ETSI TR 102 831 V0.10.4. Implementation guidelines
for a second generation digital terrestrial television broadcast-
ing system (DVB-T2). ETSI Technical Report, 2010.

[9] D. Pérez-Calderón, V. Baena-Lecuyer, A.C. Oria, P. López,
and J.G. Doblado. Rotated constellation demapper for DVB-
T2. Electronics Letters, 47(1):31 –32, 6 2011.

[10] Kyeongyeon Kim, Kitaek Bae, and Ho Yang. One-dimensional
soft-demapping using decorrelation with interference cancel-
lation for rotated QAM constellations. In Consumer Com-
munications and Networking Conference (CCNC), 2012 IEEE,
pages 787 –791, jan. 2012.

[11] Kitaek Bae, Kyeongyeon Kim, and Ho Yang. Low complex-
ity two-stage soft demapper for rotated constellation in DVB-
T2. In Consumer Electronics (ICCE), 2012 IEEE International
Conference on, pages 618 –619, jan. 2012.

[12] NVIDIA. CUDA C Programming Guide v.4.0.
http://www.nvidia.com, 2011.

[13] NVIDIA. NVIDIA GeForce GTX 570 GPU Datasheet.
Datasheet, http://www.nvidia.com, 2010.

[14] NVIDIA. GeForce GTX 570.
http://www.nvidia.com/object/product-geforce-gtx-570-
us.html. Accessed June 2011.

[15] NVIDIA. NVIDIA’s Next Generation CUDA Compute Archi-
tecture: Fermi. Whitepaper, http://www.nvidia.com, 2009.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

238

